viernes, 27 de noviembre de 2009

propagacion de luz


La propagación de la luz:

Uno de los problemas más complejos para explicar la naturaleza ondulatoria de la luz ha sido preguntarse cuál es el medio que vibra.

Podemos oir el sonido en el aire o bajo el agua porque tanto el aire como el agua son los medios materiales que transportan las ondas. En el vacío no se propaga el sonido porque no hay ningún medio que pueda vibrar.

Sin embargo la luz sí que puede viajar por el vacío y este hecho no ha resultado fácil de explicar. En un principio los físicos suponían que debía haber "algo" en el vacío que sirviera para transportar las ondas luminosas, pero nadie podía detectarlo.

En un principio se comenzó a teorizar sobre la existencia de un "éter" que ocupaba el vacío y no podía ser eliminado. Se suponía que el éter era el medio por el que viajaba la luz.

Por un lado el éter debía ser un medio muy rígido para poder justificar la alta velocidad de propagación de la luz y por otro lado, si se trataba de un medio tan rígido, no se explicaba por qué los objetos se podían mover a través de él sin apenas resistencia. La idea del éter se mantuvo viva hasta que a principios del siglo XX Einstein justificó que determinados tipos de ondas, como la luz, podían desplazarse en el vacío.
la optica es la rama de la fisica que estudia el comportamiento de la luz, sus caracteristicas y sus manifestaciones, abarca el estudio de la reflexion la reflaccion las interferencias la difraccion la formacion de imagenes y la interaccion de la luz co la materia

la ley de la refraccion fue descubierta experimentalmente en 1621 por willerbrord snell. en 1657 pierre de fermat anuncion el principio del tiempo minimo y a partir de el dedujo la ley de la refraccion
La luz (del latín lux, lucis) es la clase de energía electromagnética radiante que puede ser percibida por el ojo humano. En un sentido más amplio, el término luz incluye el rango entero de radiación conocido como el espectro electromagnético.

La ciencia que estudia las principales formas de producir luz, así como su control y aplicaciones, se denomina óptica.

La naturaleza física de la luz ha sido uno de los grandes problemas de la ciencia. Desde la antigua Grecia se consideraba la luz como algo de naturaleza corpuscular, eran corpúsculos que formaban el rayo luminoso. Así explicaban fenómenos como la reflexión y refracción de la luz. Newton en el siglo XVIII defendió esta idea, suponía que la luz estaba formada por corpúsculos lanzados a gran velocidad por los cuerpos emisores de luz. Escribió un tratado de Óptica en el que explicó multitud de fenómenos que sufría la luz.

reflexion

REFLEXIÓN
Este es uno de los fenómenos ópticos más sencillos. Si nosotros encendiéramos una linterna apuntándole a una SUPERFICIE PULIDA (espejo) veríamos como el haz de luz producido por la linterna rebota y vuelve dirigiéndose por ejemplo hacia una pared.
Entonces tomando una recta de referencia normal (N) perpendicular al espejo tenemos un rayo incidente (el proveniente de la linterna) y un rayo reflejado (el proveniente del espejo). Sobre este fenómeno rigen dos leyes:
1° Tanto el rayo incidente como el rayo reflejado y la recta N pertenecen al mismo plano.
2° El ángulo de incidencia es igual al ángulo de reflexión ( ). De este modo se deduce fácilmente que si el rayo incidente coincide con la recta N este rebota sobre sí mismo, ya que ambos ángulos tienen 0°.


Leyes de la reflexión regular y especular [
Cuando la superficie reflectante es muy lisa ocurre una reflexión de luz llamada especular o regular. Para este caso las leyes de la reflexión son las siguientes:
1. El rayo incidente, el rayo reflejado y la recta normal, deben estar en el mismo plano (mismo medio), con respecto a la superficie de reflexión en el punto de incidencia.
2. El ángulo formado entre el rayo incidente y la recta normal es igual al ángulo que existe entre el rayo reflejado y la recta normal.

θi = θr

Reflexión interna total
Cuando en la refracción el ángulo de incidencia es mayor que el ángulo crítico ocurre lo que se conoce como reflexión interna total.
Otros tipos de reflexión
Retrorreflexión


Principio de funcionamiento de un reflector de esquina
Artículo principal: Retrorreflector
La retrorreflexión es la capacidad que tienen algunas superficies que por su estructura pueden reflejar la luz de vuelta hacia la fuente, sin que importe el ángulo de incidencia original. Este comportamiento se puede observar en un espejo, pero únicamente cuando éste se encuentra perpendicular a la fuente; es decir, cuando el ángulo de incidencia es igual a 90°. Se puede construir un retrorreflector simple colocando tres espejos ordinarios de forma que todos sean perpendiculares entre sí (un reflector esquinero). La imagen que se produce es igual a la imagen producida por un espejo pero invertida. Tal como se observa en la figura, la combinación de las diferentes superficies hace que el haz de luz sea reflejado de vuelta a la fuente.
Si a una superficie se le aplica una pequeña capa de esferas reflectivas es posible obtener una superficie con una capacidad limitada de retrorreflexión. El mismo efecto se puede obtener si se dota a la superficies con una estructura similar a pequeñas pirámides (reflexión esquinera). En ambos casos, la estructura interna de la superficie refleja la luz que incide sobre ella y la envía directamente hacia la fuente. Este tipo de superficies se utilizan para crear las señales de tránsito y las placas de los automóviles; en este caso particular no se desea una retrorreflexión perfecta, pues se quiere que la luz retorne tanto hacia las luces del vehículo que emite el haz de luz como a los ojos de la persona que lo va conduciendo.

difraccion y reflexion difusa

DIFRACCIÓN
Si un objeto opaco se coloca entre una fuente puntual de luz y una pantalla blanca, un examen cuidadoso muestra que el borde de la sombra no es perfectamente agudo, como lo predice la ley de propagación rectilínea de la óptica geométrica. Más bien se encuentra que una pequeña porción de luz se derrama dentro de la zona oscura y que franjas desvanecidas aparecen en la zona iluminada.
Otro fenómeno relacionado es el esparcimiento de un haz de luz a su paso por un pequeño agujero o separación angosta. El nombre dado a estas variantes de la óptica geométrica se conoce como difracción. La óptica geométrica provee resultados útiles en la mayoría de aplicaciones debido a que la longitud de onda de la luz visible es pequeña y los efectos de difracción no son importantes en circunstancias ordinarias.
Las características esenciales de la difracción se explican por el principio de Huygens, que establece que cada punto en un frente de onda que avanza, puede ser considerado la fuente de una nueva onda u onda secundaria. Las ondas secundarias se combinan para producir el nuevo frente de onda.

La difracción es particularmente aparente en la retícula de difracción, un dispositivo usado para separar luz en sus longitudes de onda componentes. La retícula se hace al rayar surcos o estrías cercanas espaciadas equidistantemente sobre una superficie de vidrio u otro material. Cuando la retícula se ilumina con un haz de luz paralelo, la onda incidente es descompuesta por las estrías en una serie de ondas secundarias.
La dirección de la cual procede el nuevo frente de onda, está determinado por el requerimiento para que las ondas secundarias se refuercen una a otra. Este refuerzamiento ocurre cuando la diferencia de trayectoria óptica entre ondas, desde estrías adyacentes, son un número entero de longitudes de onda. La mayoría de instrumentos espectroscopicos utilizan retículas, más que prismas para el elemento dispersivo básico.

Reflexión difusa
Cuando iluminamos una hoja de papel en un cuarto oscuro pareciera que lo hoja difundiría la luz haciendo que gran parte de la habitación se ilumine. Esto se llama reflexión difusa y sucede a partir de numerosas reflexiones y refracciones que ocurren el la hoja.

flujo luminoso




Flujo luminoso
Para hacernos una primera idea consideraremos dos bombillas, una de 25 W y otra de 60 W. Está claro que la de 60 W dará una luz más intensa. Pues bien, esta es la idea: ¿cuál luce más? o dicho de otra forma ¿cuánto luce cada bombilla?
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Cuando hablamos de 25 W o 60 W nos referimos sólo a la potencia consumida por la bombilla de la cual solo una parte se convierte en luz visible, el llamado flujo luminoso. Podríamos medirlo en watts (W), pero parece más sencillo definir una nueva unidad, el lumen, que tome como referencia la radiación visible. Empíricamente se demuestra que a una radiación de 555 nm de 1 W de potencia emitida por un cuerpo negro le corresponden 683 lumen.
Se define el flujo luminoso como la potencia (W) emitida en forma de radiación luminosa a la que el ojo humano es sensible. Su símbolo es y su unidad es el lumen (lm). A la relación entre watts y lúmenes se le llama equivalente luminoso de la energía y equivale a:
1 watt-luz a 555 nm = 683 lm
Flujo luminoso Símbolo:
Unidad: lumen (lm)
Intensidad luminosa

El flujo luminoso nos da una idea de la cantidad de luz que emite una fuente de luz, por ejemplo una bombilla, en todas las direcciones del espacio. Por contra, si pensamos en un proyector es fácil ver que sólo ilumina en una dirección. Parece claro que necesitamos conocer cómo se distribuye el flujo en cada dirección del espacio y para eso definimos la intensidad luminosa.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Diferencia entre flujo e intensidad luminosa.
Se conoce como intensidad luminosa al flujo luminoso emitido por unidad de ángulo sólido en una dirección concreta. Su símbolo es I y su unidad la candela (cd).
Intensidad luminosa Símbolo: I
Unidad: candela (cd)

Iluminancia
Quizás haya jugado alguna vez a iluminar con una linterna objetos situados a diferentes distancias. Si se pone la mano delante de la linterna podemos ver esta fuertemente iluminada por un círculo pequeño y si se ilumina una pared lejana el circulo es grande y la luz débil. Esta sencilla experiencia recoge muy bien el concepto de iluminancia.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Concepto de iluminancia.

Se define iluminancia como el flujo luminoso recibido por una superficie. Su símbolo es E y su unidad el lux (lx) que es un lm/m2.
Iluminancia
Símbolo: E
Unidad: lux (lx)

rayo luminoso y refraccion



Rayo luminoso

Las líneas rectilíneas representan los rayos luminosos, que en la ilustración se reflejan y refractan en la fina película de una pompa de jabón.
El rayo luminoso es la línea imaginaria que representa la dirección por la que la luz se propaga.
La utilización de este modelo, ampliamente divulgado en óptica geométrica, simplifica los cálculos debido al principio de propagación en línea recta de la luz en medios homogéneos e isótropos, como lo son el aire o el agua. En óptica física, el rayo luminoso es la trayectoria que teóricamente recorre la energía luminosa. En la teoría corpuscular de la luz, el rayo luminoso representa la trayectoria de los fotones, perdiendo todo significado cuando los efectos de la mecánica cuántica comienzan a apreciarse.
Cabe aclarar que el concepto de rayo luminoso pierde su utilidad cuando los fenómenos de difracción empiezan a tomar un papel relevante; por ejemplo, cuando un haz de luz pasa a través de una abertura de anchura comparable a la longitud de onda del propio haz.


Reflexión interna total


Se denomina reflexión interna total al fenómeno que se produce cuando un rayo de luz, atravesando un medio de índice de refracción n más grande que el índice de refracción en el que este se encuentra, se refracta de tal modo que no es capaz de atravesar la superficie entre ambos medios reflejándose completamente.
Este fenómeno solo se produce para ángulos de incidencia superiores a un cierto valor crítico, θc. Para ángulos mayores la luz deja de atravesar la superficie y es reflejada internamente de manera total. La reflexión interna total solamente ocurre en rayos viajando de un medio de alto índice refractivo hacia medios de menor índice de refracción.

La reflexión interna total se utiliza en fibra óptica para conducir la luz a través de la fibra sin pérdidas de energía. En una fibra óptica el material interno tiene un índice de refracción más grande que el material que lo rodea. El ángulo de la incidencia de la luz es crítico para la base y su revestimiento y se produce una reflexión interna total que preserva la energía transportada por la fibra.
En aparatos de óptica se prefiere utilizar la reflexión total en lugar de espejos metalizados. Como ejemplo de utilización de la reflexión total en aparatos corrientes encontramos el pentaprisma de las cámaras fotográficas réflex y los prismas Porro o Schmidt-Pechan de los prismáticos.
La reflexión interna total es responsable de los destellos de luz que se observan en un diamante tallado.

sombras



SOMBRAS

Una sombra es una región de oscuridad donde la luz es obstaculizada. Una sombra ocupa todo el espacio de detrás de un objeto opaco con una fuente de luz frente a él. La sección eficaz de una sombra es una silueta bidimensional o una proyección invertida del objeto que bloquea la luz.



Umbra, penumbra, y antumbraLa umbra (en latín: "sombra") es la parte más oscura de una sombra. Dentro de la umbra, la fuente de luz es completamente bloqueada por el objeto que causa la sombra. Esto contrasta con la penumbra (en latín: paene " casi " + umbra "sombra"), donde la fuente lumínica sólo es bloqueada parcialmente.

La parte donde un eclipse anular es visible se llama "antumbra" (en latín: anti " opuesto a " + umbra "sombra"). En un eclipse anular, la Luna no tiene un tamaño suficiente para cubrir completamente el Sol, y su sombra, por lo tanto, no es lo suficientemente larga para alcanzar a tocar la superficie de la Tierra. En un eclipse anular de Sol, la Luna es rodeada por un anillo (annulus) de luz, y los lugares en la Tierra donde el anillo puede ser visto corresponden a la antumbra. Si bien la antumbra puede ser vista como una especie de "sombra negativa", nunca es tan oscura como la penumbra o como la umbra en un eclipse total de Sol.

jueves, 26 de noviembre de 2009

historia de la naturaleza de la luz

Historia de la naturaleza de la luz
Breve recopilación historica:
¿Qué es la luz?. Isaac Newton (1642 - 1727) el que formula la primera hipótesis científica sobre la naturaleza de la luz.
Modelo corpuscular: Conocida como teoría corpuscular o de la emisión, es el primer modelo exitoso en explicar el comportamiento de la luz. En gran parte se debe a la autoridad de Newton, ya que en esa misma época el modelo ondulatorio trataba de explicar el mismo fenómeno.
A finales del siglo XVI, con el uso de lentes e instrumentos ópticos, empezaron a observar, analizar y experimentar los fenómenos luminosos, siendo el holandés Willebrord Snell, en 1620, quién descubrió de manera experimental la ley de la refracción, aunque no fue conocida hasta que, en 1638, René Descartes (1596-1650) publicó su tratado "Óptica". Descartes fue el primer gran defensor de la teoría corpuscular, diciendo que la luz se comportaba como un proyectil que se propulsaba a velocidad infinita. Sin especificar absolutamente nada sobre su naturaleza y rechazando que cierta materia fuera de los objetos al ojo, explicó claramente el fenómeno de reflexión, pero tuvo alguna dificultad con la refracción.
En 1672 Newton envió una breve exposición de su teoría de los colores a la Royal Society de Londres. Su publicación provocó tantas críticas que confirmaron su recelo a las publicaciones, por lo que se retiró a la soledad de su estudio en Cambridge. En 1704, sin embargo, publicó su obra Óptica, en la que explicaba detalladamente su teoría. En esta obra explicaba que las fuentes luminosas emiten corpúsculos muy livianos que se desplazan a gran velocidad y en línea recta. Según su teoría la variación de intensidad de la fuente luminosa era proporcional a la cantidad de corpúsculos que emitía en determinado tiempo. La reflexión de la luz consistía en la incidencia de dichos corpúsculos en forma oblicua sobre una superficie espejada, de manera que al llegar a ella variaba de dirección pero siempre en el mismo medio. La igualdad del ángulo de incidencia con el de reflexión se debía a que tanto antes como después de la reflexión los corpúsculos conservaban la misma velocidad (debido a que permanecían en el mismo medio). La refracción la resolvió expresando que los corpúsculos que inciden oblicuamente en una superficie de separación de dos medios de distinta densidad son atraídos por la masa del medio más denso y, por lo tanto, aumenta la componente de la velocidad que es la velocidad que es perpendicular a la superficie de separación, razón por la cual los corpúsculos luminosos se acercan a la normal.